Monotone Multigrid Methods for Elliptic Variational Inequalities I 1
نویسنده
چکیده
We derive fast solvers for discrete elliptic variational inequalities of the rst kind (obstacle problems) as resulting from the approximation of related continuous problems by piecewise linear nite elements. Using basic ideas of successive subspace correction, we modify well{known relaxation methods by extending the set of search directions. Extended under-relaxations are called monotone multigrid methods, if they are quasioptimal in a certain sense. By construction, all monotone multigrid methods are globally convergent. We take a closer look at two natural variants, the standard monotone multigrid method and a truncated version. For the considered model problems, the asymptotic convergence rates resulting from the standard approach suuer from insuucient coarse{grid transport, while the truncated monotone multigrid method provides the same eeciency as in the unconstrained case.
منابع مشابه
Monotone Multigrid Methods for Elliptic Variational Inequalities I
We derive fast solvers for discrete elliptic variational inequalities of the rst kind (obstacle problems) as resulting from the approximation of related continuous problems by piecewise linear nite elements. Using basic ideas of successive subspace correction, we modify well-known relaxation methods by extending the set of search directions. Extended underrelaxations are called monotone multigr...
متن کاملMonotone Multigrid Methods for Elliptic Variational Inequalities Ii 1
We derive fast solvers for discrete elliptic variational inequalities of the second kind as resulting from the approximation by piecewise linear nite elements. Following the rst part of this paper, monotone multigrid methods are considered as extended underrelaxations. Again, the coarse grid corrections are localized by suitable constraints, which in this case are xed by ne grid smoothing. We c...
متن کاملMonotone Multigrid Methods for Elliptic Variational Inequalities Ii
We derive fast solvers for discrete elliptic variational inequalities of the second kind as resulting from the approximation by piecewise linear nite elements. Following the rst part of this paper, monotone multigrid methods are considered as extended underrelaxations. Again, the coarse grid corrections are localized by suitable constraints, which in this case are xed by ne grid smoothing. We c...
متن کاملRalf Kornhuber Monotone
We derive fast solvers for discrete elliptic variational inequalities of the second kind as resulting from the approximation by piecewise linear nite elements. Following the rst part of this paper, monotone multigrid methods are considered as extended underrelaxations. Again, the coarse grid corrections are localized by suitable constraints, which in this case are xed by ne grid smoothing. We c...
متن کاملB-Spline-Based Monotone Multigrid Methods
Abstract. For the efficient numerical solution of elliptic variational inequalities on closed convex sets, multigrid methods based on piecewise linear finite elements have been investigated over the past decades. Essential for their success is the appropriate approximation of the constraint set on coarser grids which is based on function values for piecewise linear finite elements. On the other...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1993